Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Temperature responses of dark respiration in relation to leaf sugar concentration.

Identifieur interne : 002897 ( Main/Exploration ); précédent : 002896; suivant : 002898

Temperature responses of dark respiration in relation to leaf sugar concentration.

Auteurs : Katja Hüve [Estonie] ; Irina Bichele ; Hiie Ivanova ; Olav Keerberg ; Tiit P Rnik ; Bahtijor Rasulov ; Mari Tobias ; Ulo Niinemets

Source :

RBID : pubmed:22188403

Descripteurs français

English descriptors

Abstract

Changes in leaf sugar concentrations are a possible mechanism of short-term adaptation to temperature changes, with natural fluctuations in sugar concentrations in the field expected to modify the heat sensitivity of respiration. We studied temperature-response curves of leaf dark respiration in the temperate tree Populus tremula (L.) in relation to leaf sugar concentration (1) under natural conditions or (2) leaves with artificially enhanced sugar concentration. Temperature-response curves were obtained by increasing the leaf temperature at a rate of 1°C min⁻¹. We demonstrate that respiration, similarly to chlorophyll fluorescence, has a break-point at high temperature, where respiration starts to increase with a faster rate. The average break-point temperature (T(RD) ) was 48.6 ± 0.7°C at natural sugar concentration. Pulse-chase experiments with ¹⁴CO₂ demonstrated that substrates of respiration were derived mainly from the products of starch degradation. Starch degradation exhibited a similar temperature-response curve as respiration with a break-point at high temperatures. Acceleration of starch breakdown may be one of the reasons for the observed high-temperature rise in respiration. We also demonstrate that enhanced leaf sugar concentrations or enhanced osmotic potential may protect leaf cells from heat stress, i.e. higher sugar concentrations significantly modify the temperature-response curve of respiration, abolishing the fast increase of respiration. Sugars or enhanced osmotic potential may non-specifically protect respiratory membranes or may block the high-temperature increase in starch degradation and consumption in respiratory processes, thus eliminating the break-points in temperature curves of respiration in sugar-fed leaves.

DOI: 10.1111/j.1399-3054.2011.01562.x
PubMed: 22188403


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Temperature responses of dark respiration in relation to leaf sugar concentration.</title>
<author>
<name sortKey="Huve, Katja" sort="Huve, Katja" uniqKey="Huve K" first="Katja" last="Hüve">Katja Hüve</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biophysics and Plant Physiology, University of Tartu, Tartu, Estonia. shueve@gmx.de</nlm:affiliation>
<country xml:lang="fr">Estonie</country>
<wicri:regionArea>Department of Biophysics and Plant Physiology, University of Tartu, Tartu</wicri:regionArea>
<wicri:noRegion>Tartu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bichele, Irina" sort="Bichele, Irina" uniqKey="Bichele I" first="Irina" last="Bichele">Irina Bichele</name>
</author>
<author>
<name sortKey="Ivanova, Hiie" sort="Ivanova, Hiie" uniqKey="Ivanova H" first="Hiie" last="Ivanova">Hiie Ivanova</name>
</author>
<author>
<name sortKey="Keerberg, Olav" sort="Keerberg, Olav" uniqKey="Keerberg O" first="Olav" last="Keerberg">Olav Keerberg</name>
</author>
<author>
<name sortKey="P Rnik, Tiit" sort="P Rnik, Tiit" uniqKey="P Rnik T" first="Tiit" last="P Rnik">Tiit P Rnik</name>
</author>
<author>
<name sortKey="Rasulov, Bahtijor" sort="Rasulov, Bahtijor" uniqKey="Rasulov B" first="Bahtijor" last="Rasulov">Bahtijor Rasulov</name>
</author>
<author>
<name sortKey="Tobias, Mari" sort="Tobias, Mari" uniqKey="Tobias M" first="Mari" last="Tobias">Mari Tobias</name>
</author>
<author>
<name sortKey="Niinemets, Ulo" sort="Niinemets, Ulo" uniqKey="Niinemets U" first="Ulo" last="Niinemets">Ulo Niinemets</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22188403</idno>
<idno type="pmid">22188403</idno>
<idno type="doi">10.1111/j.1399-3054.2011.01562.x</idno>
<idno type="wicri:Area/Main/Corpus">002B98</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002B98</idno>
<idno type="wicri:Area/Main/Curation">002B98</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002B98</idno>
<idno type="wicri:Area/Main/Exploration">002B98</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Temperature responses of dark respiration in relation to leaf sugar concentration.</title>
<author>
<name sortKey="Huve, Katja" sort="Huve, Katja" uniqKey="Huve K" first="Katja" last="Hüve">Katja Hüve</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biophysics and Plant Physiology, University of Tartu, Tartu, Estonia. shueve@gmx.de</nlm:affiliation>
<country xml:lang="fr">Estonie</country>
<wicri:regionArea>Department of Biophysics and Plant Physiology, University of Tartu, Tartu</wicri:regionArea>
<wicri:noRegion>Tartu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bichele, Irina" sort="Bichele, Irina" uniqKey="Bichele I" first="Irina" last="Bichele">Irina Bichele</name>
</author>
<author>
<name sortKey="Ivanova, Hiie" sort="Ivanova, Hiie" uniqKey="Ivanova H" first="Hiie" last="Ivanova">Hiie Ivanova</name>
</author>
<author>
<name sortKey="Keerberg, Olav" sort="Keerberg, Olav" uniqKey="Keerberg O" first="Olav" last="Keerberg">Olav Keerberg</name>
</author>
<author>
<name sortKey="P Rnik, Tiit" sort="P Rnik, Tiit" uniqKey="P Rnik T" first="Tiit" last="P Rnik">Tiit P Rnik</name>
</author>
<author>
<name sortKey="Rasulov, Bahtijor" sort="Rasulov, Bahtijor" uniqKey="Rasulov B" first="Bahtijor" last="Rasulov">Bahtijor Rasulov</name>
</author>
<author>
<name sortKey="Tobias, Mari" sort="Tobias, Mari" uniqKey="Tobias M" first="Mari" last="Tobias">Mari Tobias</name>
</author>
<author>
<name sortKey="Niinemets, Ulo" sort="Niinemets, Ulo" uniqKey="Niinemets U" first="Ulo" last="Niinemets">Ulo Niinemets</name>
</author>
</analytic>
<series>
<title level="j">Physiologia plantarum</title>
<idno type="eISSN">1399-3054</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Carbohydrate Metabolism (physiology)</term>
<term>Carbohydrates (analysis)</term>
<term>Carbon Dioxide (metabolism)</term>
<term>Cell Respiration (physiology)</term>
<term>Chlorophyll (MeSH)</term>
<term>Darkness (MeSH)</term>
<term>Fluorescence (MeSH)</term>
<term>Hot Temperature (MeSH)</term>
<term>Osmotic Pressure (MeSH)</term>
<term>Photosynthesis (physiology)</term>
<term>Plant Leaves (metabolism)</term>
<term>Plant Leaves (physiology)</term>
<term>Plant Transpiration (MeSH)</term>
<term>Populus (metabolism)</term>
<term>Populus (physiology)</term>
<term>Starch (metabolism)</term>
<term>Stress, Physiological (physiology)</term>
<term>Trees (metabolism)</term>
<term>Trees (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Amidon (métabolisme)</term>
<term>Arbres (métabolisme)</term>
<term>Arbres (physiologie)</term>
<term>Chlorophylle (MeSH)</term>
<term>Dioxyde de carbone (métabolisme)</term>
<term>Feuilles de plante (métabolisme)</term>
<term>Feuilles de plante (physiologie)</term>
<term>Fluorescence (MeSH)</term>
<term>Glucides (analyse)</term>
<term>Métabolisme glucidique (physiologie)</term>
<term>Obscurité (MeSH)</term>
<term>Photosynthèse (physiologie)</term>
<term>Populus (métabolisme)</term>
<term>Populus (physiologie)</term>
<term>Pression osmotique (MeSH)</term>
<term>Respiration cellulaire (physiologie)</term>
<term>Stress physiologique (physiologie)</term>
<term>Température élevée (MeSH)</term>
<term>Transpiration des plantes (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Carbohydrates</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carbon Dioxide</term>
<term>Starch</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Glucides</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plant Leaves</term>
<term>Populus</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Amidon</term>
<term>Arbres</term>
<term>Dioxyde de carbone</term>
<term>Feuilles de plante</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Arbres</term>
<term>Feuilles de plante</term>
<term>Métabolisme glucidique</term>
<term>Photosynthèse</term>
<term>Populus</term>
<term>Respiration cellulaire</term>
<term>Stress physiologique</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Carbohydrate Metabolism</term>
<term>Cell Respiration</term>
<term>Photosynthesis</term>
<term>Plant Leaves</term>
<term>Populus</term>
<term>Stress, Physiological</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Chlorophyll</term>
<term>Darkness</term>
<term>Fluorescence</term>
<term>Hot Temperature</term>
<term>Osmotic Pressure</term>
<term>Plant Transpiration</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Chlorophylle</term>
<term>Fluorescence</term>
<term>Obscurité</term>
<term>Pression osmotique</term>
<term>Température élevée</term>
<term>Transpiration des plantes</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Changes in leaf sugar concentrations are a possible mechanism of short-term adaptation to temperature changes, with natural fluctuations in sugar concentrations in the field expected to modify the heat sensitivity of respiration. We studied temperature-response curves of leaf dark respiration in the temperate tree Populus tremula (L.) in relation to leaf sugar concentration (1) under natural conditions or (2) leaves with artificially enhanced sugar concentration. Temperature-response curves were obtained by increasing the leaf temperature at a rate of 1°C min⁻¹. We demonstrate that respiration, similarly to chlorophyll fluorescence, has a break-point at high temperature, where respiration starts to increase with a faster rate. The average break-point temperature (T(RD) ) was 48.6 ± 0.7°C at natural sugar concentration. Pulse-chase experiments with ¹⁴CO₂ demonstrated that substrates of respiration were derived mainly from the products of starch degradation. Starch degradation exhibited a similar temperature-response curve as respiration with a break-point at high temperatures. Acceleration of starch breakdown may be one of the reasons for the observed high-temperature rise in respiration. We also demonstrate that enhanced leaf sugar concentrations or enhanced osmotic potential may protect leaf cells from heat stress, i.e. higher sugar concentrations significantly modify the temperature-response curve of respiration, abolishing the fast increase of respiration. Sugars or enhanced osmotic potential may non-specifically protect respiratory membranes or may block the high-temperature increase in starch degradation and consumption in respiratory processes, thus eliminating the break-points in temperature curves of respiration in sugar-fed leaves.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22188403</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>07</Month>
<Day>25</Day>
</DateCompleted>
<DateRevised>
<Year>2012</Year>
<Month>03</Month>
<Day>14</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1399-3054</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>144</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2012</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>Physiologia plantarum</Title>
<ISOAbbreviation>Physiol Plant</ISOAbbreviation>
</Journal>
<ArticleTitle>Temperature responses of dark respiration in relation to leaf sugar concentration.</ArticleTitle>
<Pagination>
<MedlinePgn>320-34</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/j.1399-3054.2011.01562.x</ELocationID>
<Abstract>
<AbstractText>Changes in leaf sugar concentrations are a possible mechanism of short-term adaptation to temperature changes, with natural fluctuations in sugar concentrations in the field expected to modify the heat sensitivity of respiration. We studied temperature-response curves of leaf dark respiration in the temperate tree Populus tremula (L.) in relation to leaf sugar concentration (1) under natural conditions or (2) leaves with artificially enhanced sugar concentration. Temperature-response curves were obtained by increasing the leaf temperature at a rate of 1°C min⁻¹. We demonstrate that respiration, similarly to chlorophyll fluorescence, has a break-point at high temperature, where respiration starts to increase with a faster rate. The average break-point temperature (T(RD) ) was 48.6 ± 0.7°C at natural sugar concentration. Pulse-chase experiments with ¹⁴CO₂ demonstrated that substrates of respiration were derived mainly from the products of starch degradation. Starch degradation exhibited a similar temperature-response curve as respiration with a break-point at high temperatures. Acceleration of starch breakdown may be one of the reasons for the observed high-temperature rise in respiration. We also demonstrate that enhanced leaf sugar concentrations or enhanced osmotic potential may protect leaf cells from heat stress, i.e. higher sugar concentrations significantly modify the temperature-response curve of respiration, abolishing the fast increase of respiration. Sugars or enhanced osmotic potential may non-specifically protect respiratory membranes or may block the high-temperature increase in starch degradation and consumption in respiratory processes, thus eliminating the break-points in temperature curves of respiration in sugar-fed leaves.</AbstractText>
<CopyrightInformation>Copyright © Physiologia Plantarum 2011.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Hüve</LastName>
<ForeName>Katja</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Department of Biophysics and Plant Physiology, University of Tartu, Tartu, Estonia. shueve@gmx.de</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bichele</LastName>
<ForeName>Irina</ForeName>
<Initials>I</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ivanova</LastName>
<ForeName>Hiie</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Keerberg</LastName>
<ForeName>Olav</ForeName>
<Initials>O</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Pärnik</LastName>
<ForeName>Tiit</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rasulov</LastName>
<ForeName>Bahtijor</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tobias</LastName>
<ForeName>Mari</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Niinemets</LastName>
<ForeName>Ulo</ForeName>
<Initials>U</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>01</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Denmark</Country>
<MedlineTA>Physiol Plant</MedlineTA>
<NlmUniqueID>1256322</NlmUniqueID>
<ISSNLinking>0031-9317</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002241">Carbohydrates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>1406-65-1</RegistryNumber>
<NameOfSubstance UI="D002734">Chlorophyll</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>142M471B3J</RegistryNumber>
<NameOfSubstance UI="D002245">Carbon Dioxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9005-25-8</RegistryNumber>
<NameOfSubstance UI="D013213">Starch</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D050260" MajorTopicYN="N">Carbohydrate Metabolism</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002241" MajorTopicYN="N">Carbohydrates</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="Y">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002245" MajorTopicYN="N">Carbon Dioxide</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019069" MajorTopicYN="N">Cell Respiration</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002734" MajorTopicYN="N">Chlorophyll</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003624" MajorTopicYN="N">Darkness</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005453" MajorTopicYN="N">Fluorescence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006358" MajorTopicYN="N">Hot Temperature</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009997" MajorTopicYN="N">Osmotic Pressure</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010788" MajorTopicYN="N">Photosynthesis</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018526" MajorTopicYN="N">Plant Transpiration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013213" MajorTopicYN="N">Starch</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="N">Stress, Physiological</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>12</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>12</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>7</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22188403</ArticleId>
<ArticleId IdType="doi">10.1111/j.1399-3054.2011.01562.x</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Estonie</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Bichele, Irina" sort="Bichele, Irina" uniqKey="Bichele I" first="Irina" last="Bichele">Irina Bichele</name>
<name sortKey="Ivanova, Hiie" sort="Ivanova, Hiie" uniqKey="Ivanova H" first="Hiie" last="Ivanova">Hiie Ivanova</name>
<name sortKey="Keerberg, Olav" sort="Keerberg, Olav" uniqKey="Keerberg O" first="Olav" last="Keerberg">Olav Keerberg</name>
<name sortKey="Niinemets, Ulo" sort="Niinemets, Ulo" uniqKey="Niinemets U" first="Ulo" last="Niinemets">Ulo Niinemets</name>
<name sortKey="P Rnik, Tiit" sort="P Rnik, Tiit" uniqKey="P Rnik T" first="Tiit" last="P Rnik">Tiit P Rnik</name>
<name sortKey="Rasulov, Bahtijor" sort="Rasulov, Bahtijor" uniqKey="Rasulov B" first="Bahtijor" last="Rasulov">Bahtijor Rasulov</name>
<name sortKey="Tobias, Mari" sort="Tobias, Mari" uniqKey="Tobias M" first="Mari" last="Tobias">Mari Tobias</name>
</noCountry>
<country name="Estonie">
<noRegion>
<name sortKey="Huve, Katja" sort="Huve, Katja" uniqKey="Huve K" first="Katja" last="Hüve">Katja Hüve</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002897 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002897 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22188403
   |texte=   Temperature responses of dark respiration in relation to leaf sugar concentration.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22188403" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020